Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 250: 126211, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562466

RESUMO

Melatonin and fucoidan are naturally active compounds that have been reported to have therapeutic benefits for patients receiving cancer treatment. However, both compounds face significant challenges, including physical, chemical, and biological metabolisms in the gastrointestinal tract, which limit their ability to achieve therapeutic concentrations at the tumor site. Furthermore, the effectiveness of melatonin and fucoidan as adjuvants in vivo is influenced by the route of administration through the digestive system and their accumulation at the endpoint of the tumor. In this study, we developed an oral administration of nanoparticle, MNPs@C@F, that consisted of PLGA nanoparticles modified with chitosan, to promote intestinal microfold cell transcytosis for the delivery of melatonin and fucoidan into tumors. The experimental results indicated that melatonin and fucoidan in the tumors could regulate the tumor microenvironment by decreasing P-gp, Twist, HIF-1α, and anti-inflammatory immune cell expression, and increasing cytotoxic T cell populations following doxorubicin treatment. This resulted in an increase in chemo-drug sensitivity, inhibition of distant organ metastasis, and promotion of immunogenic cell death. This study demonstrates a favorable co-delivery system of melatonin and fucoidan to directly reduce drug resistance and metastasis in TNBC.

2.
ACS Nano ; 17(14): 13158-13175, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436002

RESUMO

Tumour hypoxia plays an important role in modulating tumorigenesis, angiogenesis, invasion, immunosuppression, resistance to treatment, and even maintenance of the stemness of cancer stem cells (CSCs). Moreover, the targeting and treatment of hypoxic cancer cells and CSCs to reduce the influence of tumor hypoxia on cancer therapy remains an imperative clinical problem that needs to be addressed. Since cancer cells upregulate the expression of glucose transporter 1 (GLUT1) through the Warburg effect, we considered the possibility of GLUT1-mediated transcytosis in cancer cells and developed a tumor hypoxia-targeting nanomedicine. Our experimental results indicate that glucosamine-labeled liposomal ceramide can be efficiently transported between cancer cells by GLUT1 transporters and substantially accumulated in the hypoxic area in in vitro CSC spheroids and in vivo tumor xenografts. We also verified the effects of exogenous ceramide on tumor hypoxia, including important bioactivities such as upregulation of p53 and retinoblastoma protein (RB), downregulation of hypoxia-inducible factor-1 alpha (HIF-1α) expression, disruption of the OCT4-SOX2 network of stemness, and inhibition of CD47 and PD-L1 expression. To achieve an ideal therapeutic outcome, we combined treatment of glucosamine-labeled liposomal ceramide with paclitaxel and carboplatin, and we found an excellent synergistic effect, with tumor clearance being noted in three-fourths of the mice. Overall, our findings provide a potential therapeutic strategy for the treatment of cancer.


Assuntos
Hipóxia , Neoplasias , Humanos , Camundongos , Animais , Transportador de Glucose Tipo 1/metabolismo , Hipóxia/metabolismo , Hipóxia Celular , Lipossomos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transcitose , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Neoplasias/patologia
3.
ACS Appl Mater Interfaces ; 15(1): 158-181, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35544684

RESUMO

Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/patologia , Nanomedicina , Glioma/patologia , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Mater Today Bio ; 17: 100482, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36388459

RESUMO

Recently, combining immunotherapy and chemotherapy has become a promising strategy to treat cancer. However, this therapeutic strategy still has its limitations because of the adverse effects caused by the simultaneous administration of multiple therapeutic agents. Using nanoparticles is an effective approach to successfully combine these therapies because they can reduce side effects, increase circulation time, and ensure the delivery of cytotoxic agents to tumor tissues. In this study, dual pH-sensitive and tumor microenvironment (TME)-active targeting micelles comprising poly(propyl methacrylate-co-glucosamine/histidine/doxorubicin) (P(PAA-co-GLU/HIS/DOX) and methoxy-poly(ethylene glycol)-block-poly(l-lysine) were prepared to encapsulate an immunomodulator, imiquimod (IMQ). Because these micelles can expose glucose targeting ligands at the TME and pH-dependently release IMQ and DOX, micelles effectively inhibit the growth of 4T1 cells selectively and highly accumulate in 4T1 cells as the pH decreased to 6.5. Moreover, in RAW 264.7 â€‹cells, these micelles prevent cell death and induce M1 macrophage polarization. In 4T1 orthotopic tumor-bearing mice, micelles not only exhibited high tumor accumulation, effective tumor inhibition, and fewer adverse effects, but also dramatically increased the number of mature dendritic cells, activate cytotoxic T cells, and polarize M1-like macrophages in tumor tissues. Overall, these micelles exhibit precise pH responsiveness and ideal drug delivery capabilities for combined chemo- and immunotherapy; these results significantly contribute to the future development of nanomedicines in cancer therapy.

5.
Adv Healthc Mater ; 11(20): e2201140, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881562

RESUMO

Multifunctional sequential targeted delivery system is developed as an efficient therapeutic strategy against malignant tumors with selective accumulation and minimal systemic drug absorption. The therapeutic system is comprised of microfluidized dextran microgels encapsulating cisplatin/superparamagnetic iron oxide nanoparticles (SPIONs)-loaded trilaurin-based lipid nanoparticles (LNPs). The microgel system is imparted hierarchically dual targeting via dextran and folic acid (FA) residues, leading to increases both in retention of the microgels in colon and in cellular uptake of the therapeutic LNPs by colon cancer cells while being used for oral therapeutic delivery. Encapsulation of the therapeutic LNPs into dextran microgels attained by microfluidized crosslinking reaction reduces gastrointestinal adhesion and prevents the FA-modified LNPs from cellular transport by proton-coupled FA transporters in small intestine during their oral delivery to colon. Upon enzymatic degradation of the dextran microgels by dextranase present exclusively in colon, LNPs thus released become more recognizable and readily internalized by FA receptor-overexpressing colon cancer cells. The combined chemo/magnetothermal therapeutic effect of dual targeted lipid nanoparticle-loaded microgels from entrapped lipidized cisplatin and alternating magnetic field-treated SPIONs significantly inhibits tumor growth and suppresses metastatic peritoneal carcinomatosis in orthotopic colon cancer-bearing mice.


Assuntos
Neoplasias do Colo , Microgéis , Nanopartículas , Camundongos , Animais , Cisplatino/farmacologia , Dextranos/química , Dextranase , Prótons , Nanopartículas/química , Neoplasias do Colo/tratamento farmacológico , Administração Oral , Ácido Fólico/química , Lipídeos , Nanopartículas Magnéticas de Óxido de Ferro
6.
J Control Release ; 345: 417-432, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331784

RESUMO

In this study, a plasmon-semiconductor nanotheranostic system comprising Au nanostars/graphene quantum dots (AuS/QD) hybrid nanoparticles loaded with BNN6 and surface modified with PEG-pyrene was developed for the photo-triggered hyperthermia effect and NO production as the dual modality treatment against orthotopic triple-negative breast cancer. The structure and morphology of the hybrid nanodevice was characterized and the NIR-II induced thermal response and NO production was determined. The hybrid nanodevice has shown enhanced plasmonic energy transfer from localized surface plasmonic resonance of Au nanostars to QD semiconductor that activates the BNN6 species loaded on QD surfaces, leading to the effective NO production and the gas therapy in addition to the photothermal response. The increased accumulation of the NIR-II-responsive hybrid nanotheranostic in tumor via the enhanced permeation and retention effects was confirmed by both in vivo fluorescence and photoacoustic imaging. The prominent therapeutic efficacy of the photothermal/NO combination therapy from the BNN6-loaded AuS@QD nanodevice with the NIR-II laser irradiation at 1064 nm against 4T1 breast cancer was observed both in vitro and in vivo. The NO therapy for the cancer treatment was evidenced with the increased cellular nitrosative and oxidative stress, nitration of tyrosine residues of mitochondrial proteins, vessel eradication and cell apoptosis. The efficacy of the photothermal treatment was corroborated directly by severe tissue thermal ablation and tumor growth inhibition. The NIR-II triggered thermal/NO combination therapy along with the photoacoustic imaging-guided therapeutic accumulation in tumor shows prominent effect to fully inhibit tumor growth and validates the promising strategy developed in this study.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Hipertermia Induzida/métodos , Nanopartículas/química , Neoplasias/terapia , Fototerapia/métodos
7.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35328500

RESUMO

Mitochondrial-targeting therapy is considered an important strategy for cancer treatment. (3-Carboxypropyl) triphenyl phosphonium (CTPP) is one of the candidate molecules that can drive drugs or nanomedicines to target mitochondria via electrostatic interactions. However, the mitochondrial-targeting effectiveness of CTPP is low. Therefore, pH-sensitive polymer-liposome complexes with charge-conversion copolymers and CTPP-containing cationic liposomes were designed for efficiently delivering an anti-cancer agent, ceramide, into cancer cellular mitochondria. The charge-conversion copolymers, methoxypoly(ethylene glycol)-block-poly(methacrylic acid-g-histidine), were anionic and helped in absorbing and shielding the positive charges of cationic liposomes at pH 7.4. In contrast, charge-conversion copolymers became neutral in order to depart from cationic liposomes and induced endosomal escape for releasing cationic liposomes into cytosol at acidic endosomes. The experimental results reveal that these pH-sensitive polymer-liposome complexes could rapidly escape from MCF-7 cell endosomes and target MCF-7 mitochondria within 3 h, thereby leading to the generation of reactive oxygen species and cell apoptosis. These findings provide a promising solution for cationic liposomes in cancer mitochondrial-targeting drug delivery.


Assuntos
Antineoplásicos , Lipossomos , Antineoplásicos/farmacologia , Cátions/química , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Mitocôndrias , Polímeros
8.
Biomaterials ; 276: 121012, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252800

RESUMO

Recent studies have indicated that cancer treatment based on immunotherapy alone is not viable. Combined treatment with other strategies is required to achieve the expected therapeutic effect. Reactive oxygen species (ROS) play an important role in regulating cancer cells and the tumor microenvironment, even in immune cells. However, rigorous regulation of the ROS level within the entire tumor tissue is difficult, limiting the application of ROS in cancer therapy. Therefore, we design an early phago-/endosome-escaping micelle that can release platinum-based drugs into the cytoplasm of macrophages and cancer cells, thereby enhancing the ROS levels of the entire tumor tissue; inducing apoptosis of cancer cells, down-regulation of CD47 expression of cancer cells, polarization of M1 macrophages, and phagocytosis of cancer cells by M1 macrophages; and achieving the dual effect of chemotherapy and macrophage-mediated immunotherapy.


Assuntos
Micelas , Neoplasias , Linhagem Celular Tumoral , Imunoterapia , Neoplasias/tratamento farmacológico , Platina , Espécies Reativas de Oxigênio
9.
Polymers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072925

RESUMO

In the treatment of cancers, small interfering ribonucleic acids (siRNAs) are delivered into cells to inhibit the oncogenic protein's expression; however, polyanions, hydrophilicity, and rapid degradations in blood, endosomal or secondary lysosomal degradation hamper clinal applications. In this study, we first synthesized and characterized two copolymers: methoxy poly(ethylene glycol)-b-poly(2-hydroxy methacrylate-ketal-pyridoxal) and methoxy poly(ethylene glycol)-b-poly(methacrylic acid-co-histidine). Afterwards, we assembled two polymers with the focal adhesion kinase (FAK) siRNA, forming polyplex-mixed micelles for the treatment of the human colon cancer cell line HCT116. In terms of the physiological condition, the cationic pyridoxal molecules that were conjugated on the copolymer with ketal bonds could electrostatically attract the siRNA. Additionally, the pyridoxal could form a hydrophobic core together with the hydrophobic deprotonated histidine molecules in the other copolymer and the hydrophilic polyethylene glycol (PEG) shell to protect the siRNA. In an acidic condition, the pyridoxal would be cleaved from the polymers due to the breakage of the ketal bonds and the histidine molecules can simultaneously be protonated, resulting in the endosome/lysosome escape effect. On the basis of our results, the two copolymers were successfully prepared and the pyridoxal derivatives were identified to be able to carry the siRNA and be cleavable by the copolymers in an acidic solution. Polyplex-mixed micelles were prepared, and the micellar structures were identified. The endosome escape behavior was observed using a confocal laser scanning microscopy (CLSM). The FAK expression was therefore reduced, and the cytotoxicity of siRNA toward human colon cancer cells was exhibited, rapidly in 24 h. This exceptional anticancer efficiency suggests the potential of the pH-sensitive polyplex-mixed micellar system in siRNA delivery.

10.
ACS Appl Bio Mater ; 4(5): 4462-4469, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006858

RESUMO

We designed a biodegradable hybrid nanostructure for near-infrared (NIR)-induced photodynamic therapy (PDT) using an ultrasmall upconversion (UC) phosphor (ß-NaYF4:Yb3+, Er3+ nanoparticle: NPs) and a hydrocarbonized rose bengal (C18RB) dye, a hydrophobized rose bengal (RB) derivative. The UC-NPs were encapsulated along with C18RB in the hydrophobic core of the micelle composed of poly(ethylene glycol) (PEG)-block-poly(ε-caprolactone) (PCL). The UC-NPs were well shielded from the aqueous environment, owing to the encapsulation in the hydrophobic PCL core, to efficiently emit green UC luminescence by avoiding the quenching by the hydroxyl groups. The hydrophobic part of C18 of C18RB worked well to be involved in the PCL core and located RB on the surface of the PCL core, making the efficient absorption of green light and the emission of singlet oxygen to surrounding water possible. Moreover, as the location is covered by PEG, the direct contact of RB to cells is prohibited to avoid their irradiation-free toxic effect on the cells. The hybrid nanostructure proved to be degradable by the hydrolysis of PEG-b-PCL. This degradation potentially results in renal excretion by the decomposition of the nanostructure into sub-10 nm size particles and makes them viable for clinical uses. These nanostructures can potentially be used for PDT of cancer in deep tissues.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Substâncias Luminescentes/farmacologia , Nanoestruturas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Rosa Bengala/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Raios Infravermelhos , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/química , Teste de Materiais , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
11.
J Control Release ; 328: 87-99, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32858076

RESUMO

The combination of photothermal and photodynamic therapy (PTT/PDT) shows pronounced potential as a prominent therapeutic strategy for tumor treatment. However, the efficacy is limited by insufficient tumor-targeted delivery of PTT and PDT reagents and the hypoxic nature of the tumor microenvironment. To overcome these limitations, tumor acidity-responsive lipid membrane-enclosed perfluorooctyl bromide oil droplet nanoparticles (NPs) surface modified with N-acetyl histidine-modified D-α-tocopheryl polyethylene glycol 1000 succinate (PFOB@IMHNPs) were developed, capable of co-delivering oxygen, IR780 (a photothermal agent) and mTHPC (a photodynamic sensitizer) into tumors. Through self-sufficient oxygen transportation in combination with promotion of cellular uptake upon acid-triggered generation of surface positive charge, the PFOB@IMHNPs effectively delivered IR780 and mTHPC and produced singlet oxygen within hypoxic TRAMP-C1 cells following exposure to irradiation at 660 nm. This led to effective killing of hypoxic cancer cells in vitro. Importantly, when irradiation at 808 and 660 nm was carried out, PT/PD combination therapy utilizing PFOB@IMHNPs dramatically suppressed the growth of TRAMP-C1 tumors through effective tumor-targeted cargo delivery and relief of tumor hypoxia. Our results suggest the high potential of the PFOB@IMHNPs developed in this study in clinical application for cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Oxigênio , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
12.
Biomaterials ; 257: 120229, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32738654

RESUMO

Radiotherapy (RT) is one of the most commonly employed approaches in the treatment of malignant tumors and is often combined with radiosensitizers to enhance the therapeutic efficacy for clinical use. For developing a smart therapeutic strategy leveraging local tissue response to photo-mediated reactions and the combination of multiple treatment modalities involving ROS-induced sensitization of RT, a novel nanophototherapeutic system has been developed. The nanotherapeutics prepared from the assembly of poly (thiodiethylene malonate) (PSDEM) and PEG-PSDEM-PEG and loaded with suberoylanilide hydroxamic acid (SAHA) employed as the RT sensitizer and indocyanine green (ICG) as the photothermal/photodynamic agent, demonstrated the capability of undergoing structural change and releasing therapeutic payloads in response to near-infrared irradiation and X-ray radiotherapy. With highly localized and controllable reactions within the tumor site, the reactive oxygen species (ROS)-triggered SAHA unloading and the hyperthermia-induced vascular permeability of oxygen led to a significant sensitization of the target tissue in RT, which, in turn, led to the promotion of therapeutic effect in conjunction with photodynamic/photothermal therapies (PDT/PTT). In vitro studies demonstrated the damage in intracellular DNA double strands and the inhibition of cell proliferation in 4T1 breast cancer cells treated with ROS-induced sensitized RT. A substantial reduction in cell viability was also observed owing to the effects of the combination of photo-mediated treatments with sensitized RT compared to the effects of RT administration alone. Complete eradication of the primary tumor and the inhibition of lung metastasis was observed in five of six orthotopic 4T1 breast cancer-bearing mice subjected to combined PDT/PTT in nanophototherapeutics with ROS-induced sensitized RT at a low dosage (6 Gy), leading to the prominent survival fraction of ca. 83% over 60 days.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Fotoquimioterapia , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Verde de Indocianina , Camundongos , Fototerapia , Espécies Reativas de Oxigênio
13.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629933

RESUMO

Soluble amyloid-ß oligomers (oAß42)-induced neuronal death and inflammation response has been recognized as one of the major causes of Alzheimer's disease (AD). In this work, a novel strategy adopting silica-coated iron oxide stir bar (MSB)-based AD therapy system via magnetic stirring-induced capture of oAß42 into magnetic plaques (mpAß42) and activation of microglia on cellular plaque clearance was developed. With oAß42 being effectively converted into mpAß42, the neurotoxicity toward neuronal cells was thus greatly reduced. In addition to the good preservation of neurite outgrowth through the diminished uptake of oAß42, neurons treated with oAß42 under magnetic stirring also exhibited comparable neuron-specific protein expression to those in the absence of oAß42. The phagocytic uptake of mpAß42 by microglia was enhanced significantly as compared to the counterpart of oAß42, and the M1 polarization of microglia often occurring after the uptake of oAß42 restricted to an appreciable extent. As a result, the inflammation induced by pro-inflammatory cytokines was greatly alleviated.

14.
Biomater Sci ; 8(14): 3885-3895, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32539060

RESUMO

Peritoneal carcinomatosis colorectal cancer (pcCRC) is one of the most challenging cases in clinical treatment due to its aggressive characteristics and diagnostic limitations, impeding the therapeutic efficacy of chemotherapy. In this study, a poly(lactic-co-glycolic acid) nanoparticle (NP)-based drug delivery system capable of encapsulating the chemodrug SN38 and enhancing drug accumulation in metastatic tumors was developed for the treatment of pcCRC. The SN38-loaded NPs with a diameter of ca. 160 nm were decorated with N-acetyl histidine-modified d-α-tocopheryl polyethylene glycol succinate (TPGS) and folate-TPGS on their surfaces for enhancing drug accumulation through surface charge conversion in a mildly acidic tumor microenvironment and further allowing the NPs to selectively target the folate receptor-overexpressed colon cancer cells. This hierarchically targeted drug delivery strategy improved not only the highly enhanced cellular uptake of drug-loaded NPs, but also the prominent anticancer effect against CT26 cancer cells in vitro. In vivo studies demonstrated the sound tumor inhibition of the SN38-loaded NPs in terms of large reductions in both tumor size and nodule number and prolongation of the survival time of pcCRC-bearing mice, indicating their high therapeutic potential for the practical treatment of pcCRC.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Nanopartículas , Neoplasias Peritoneais , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Camundongos , Neoplasias Peritoneais/tratamento farmacológico , Polietilenoglicóis , Microambiente Tumoral
15.
J Mater Chem B ; 8(17): 3789-3800, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32150202

RESUMO

To considerably enhance treatment efficacy for bone metastatic breast cancer via dual bone/tumor-targeted chemotherapy, a nanoparticle-based delivery system comprising poly(lactic-co-glycolic acid) (PLGA) as the hydrophobic core coated with alendronate-modified d-α-tocopheryl polyethylene glycol succinate (ALN-TPGS) and folic acid-conjugated TPGS (FA-TPGS) was developed as a vehicle for paclitaxel (PTX) in this work. The ALN/FA-decorated nanoparticles not only showed superior ALN-mediated binding affinity for hydroxyapatite abundant in bone tissue but also promoted uptake of payloads by folate receptor-overexpressing cancer cells to significantly augment PTX cytotoxicity. Notably, through dual-targetable delivery to the bone matrix and folate receptor-overexpressing 4T1 tumors, the PTX-loaded nanoparticles substantially accumulated in bone metastases in vivo and inhibited 4T1 tumor growth and lung metastasis, leading to significant improvement of the survival rate of treated mice. Upon treatment with the ALN/FA-decorated PTX-loaded nanoparticles, the bone destruction and bone loss of the tumor-bearing mice were appreciably retarded, and the adverse effects on normal tissues were alleviated. These results demonstrate that the ALN/FA-decorated PTX-loaded delivery system developed in this study shows great promise for the effective treatment of bone metastatic breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Paclitaxel/farmacologia , Alendronato/química , Animais , Antineoplásicos Fitogênicos/química , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ácido Fólico/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Paclitaxel/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Propriedades de Superfície
16.
J Control Release ; 318: 16-24, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31809761

RESUMO

The combination therapy, as an emerging strategy for improved clinical efficacy of cancer therapy, may not achieve effective response owing to the lack of highly selective and efficient tumor targeting. Herein, a dual stimuli-guided chemo/magnetothermal combination therapy system based upon histamine dodecyl carbamate (HDC)-coated doxorubicin (DOX)/magnetite-loaded solid lipid nanoparticles (SLNs) was developed for enhanced anticancer effects. Taking advantage of the dual pHe-induced electrostatic and magnetic guidance, the in vitro cellular uptake of these functionalized SLNs by TRAMP-C1 cancer cells was highly enhanced, leading to remarkably increased anticancer ability. With the highly selective delivery of the therapeutics toward tumor via the dual stimuli-mediated guidance, the effective growth inhibition of tumors with the small initial size (ca 50 mm3) by only chemotherapy was observed whereas the combination therapy was essentially required to fully inhibit the growth of large tumors (200 mm3). The IHC staining of tumor tissue sections with the combination therapy against large tumors showed the appreciable increase of tumor cell apoptosis and reduction of tumor angiogenesis. The results suggest that the dual stimuli-guided combination therapy system developed herein be prominent in fully inhibiting tumor growth even with the solid tumors of large size at the onset of the treatment.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Terapia Combinada , Doxorrubicina , Sistemas de Liberação de Medicamentos , Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico
17.
Colloids Surf B Biointerfaces ; 177: 294-305, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771581

RESUMO

To overcome low therapeutic efficacy of chemotherapy against multidrug resistance (MDR) breast cancer, a combination therapy system based upon functionalized polymer nanoparticles comprising poly(γ-glutamic acid)-g-poly(lactic-co-glycolic acid) (γ-PGA-g-PLGA) as the major component was developed. The NPs were loaded with doxorubicin (DOX) and indocyanine green (ICG) for dual modality cancer treatment and coated with cholesterol-PEG (C-PEG) for MDR abrogation in treatment of human MDR breast cancer. The in vitro cellular uptake of the DOX/ICG loaded nanoparticles (DI-NPs) by MDR cancer cells was significantly enhanced owing to effective inhibition of the P-gp activity by C-PEG and γ-PGA receptor-mediated endocytosis. DOX localization in cytoplasm and nucleus was observed particularly with the photo-thermal effect that facilitated intracellular drug release. As a result, the C-PEG coated DI-NPs after photo-irradiation exhibited a synergistic effect of combination (chemo/thermal) therapy to depress the proliferation of MDR cancer calls. The ex vivo biodistribution study revealed an enhanced tumor accumulation of C-PEG (2000) coated DI-NPs in MCF-7/MDR tumor-bearing nude mice due to the excellent EPR effects by the NP surface PEGylation. The MDR tumor growth was almost entirely inhibited in the group receiving combination therapy from CP2k-DI-NPs and photo-irradiation along with substantial cell apoptosis of tumor tissues examined by immunohistochemical staining. The results demonstrate a promising dual modality therapy system, CP2k-DI-NPs, developed in this work for effective combination therapy of human MDR breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Verde de Indocianina/farmacologia , Nanopartículas/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Verde de Indocianina/administração & dosagem , Verde de Indocianina/química , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/administração & dosagem , Tamanho da Partícula , Propriedades de Superfície , Distribuição Tecidual
18.
Biomaterials ; 197: 86-100, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30641267

RESUMO

Although oral formulations of anticancer chemotherapies are clinically available, the therapeutic action relies mostly on drug absorption, being inevitably accompanied with systemic side effects. It is thus desirable to develop oral therapy systems for the local treatment of colon cancers featured with highly selective delivery to cancer cells and minimized systemic drug absorption. The present study demonstrates the effective accumulation and cell uptake of the doxorubicin and superparamagnetic iron oxide nanoparticles-loaded solid lipid nanoparticle (SLN) delivery system for chemo/magnetothermal combination therapy at tumors by hierarchical targeting of folate (FA) and dextran coated on SLN surfaces in a sequential layer-by-layer manner. Both the in vitro and in vivo characterizations strongly confirmed that the dextran shells on SLN surfaces not only retarded the cellular transport of the FA-coated SLNs by the proton-coupled FA transporter on brush border membranes in small intestine, but also enhanced the particle residence in colon by specific association with dextranase. The enzymatic degradation and removal of dextran coating led to the exposure of the FA residues, thereby further facilitating the cellular-level targeting and uptake of the SLNs by the receptor-mediated endocytosis. The evaluation of the in vivo antitumor efficacy of the hierarchically targetable SLN therapy system by oral administration showed the effective inhibition of primary colon tumors and peritoneal metastasis in terms of the ascites volume and tumor nodule number and size, along with the absence of systemic side effects.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Neoplasias do Colo/terapia , Doxorrubicina/uso terapêutico , Nanopartículas/uso terapêutico , Polissacarídeos/uso terapêutico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Ácido Fólico/uso terapêutico , Hipertermia Induzida/métodos , Lipídeos/química , Lipídeos/uso terapêutico , Camundongos , Nanopartículas/química , Polissacarídeos/química
19.
Biomacromolecules ; 19(9): 3825-3839, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30044907

RESUMO

Radiotherapy is one of the general approaches to deal with malignant solid tumors in clinical treatment. To improve therapeutic efficacy, chemotherapy is frequently adopted as the adjuvant treatment in combination with radiotherapy. In this work, a reactive oxygen species (ROS)-responsive nanoparticle (NP) drug delivery system was developed to synergistically enhance the antitumor efficacy of radiotherapy by local ROS-activated chemotherapy, taking advantages of the enhanced concentration of reactive oxygen species (ROS) in tumor during X-ray irradiation and/or reoxygenation after X-ray irradiation. The ROS-responsive polymers, poly(thiodiethylene adipate) (PSDEA) and PEG-PSDEA-PEG, were synthesized and employed as the major components assembling in aqueous phase into polymer NPs in which an anticancer camptothecin analogue, SN38, was encapsulated. The drug-loaded NPs underwent structural change including swelling and partial dissociation in response to the ROS activation by virtue of the oxidation of the nonpolar sulfide residues in NPs into the polar sulfoxide units, thus leading to significant drug unloading. The in vitro performance of the chemotherapy from the X-ray irradiation preactivated NPs against BNL 1MEA.7R.1 murine carcinoma cells showed comparable cytotoxicity to free drug and appreciably enhanced effect on killing cancer cells while the X-ray irradiation being incorporated into the treatment. The in vivo tumor growth was fully inhibited with the mice receiving the local dual modality treatment of X-ray irradiation together with SN38-loaded NPs administered by intratumoral injection. The comparable efficacy of the local combinational treatment of X-ray irradiation with SN38-loaded NPs to free SN38/irradiation dual treatment corroborated the effectiveness of ROS-mediated drug release from the irradiated NPs at tumor site. The IHC examination of tumor tissues confirmed the significant reduction of VEGFA and CD31 expression with the tumor receiving the local dual treatment developed in this work, thus accounting for the absence of tumor regrowth compared to other single modality treatment.


Assuntos
Antineoplásicos/administração & dosagem , Liberação Controlada de Fármacos , Irinotecano/administração & dosagem , Nanopartículas/química , Neoplasias Experimentais/terapia , Espécies Reativas de Oxigênio/metabolismo , Adipatos/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Irinotecano/farmacocinética , Irinotecano/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/efeitos da radiação , Polietilenoglicóis/química , Safrol/análogos & derivados , Raios X
20.
Anal Chim Acta ; 1027: 109-120, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29866260

RESUMO

Multifunctional nanocomposites containing intrinsic property for serving as the sensing elements as well as targeted nanoconjugates are highly preferred in various therapeutic applications. In this work, nanocomposites of graphene quantum dots (GQDs) and Fe3O4 with conjugation of lectin protein, concanavalin A, to form GQD-ConA@Fe3O4 nanocomposites are developed for both detection of cancer cell and release of drugs to HeLa cells. The GQD-ConA@Fe3O4 nanocomposites deposited on Pt electrode can detect cancerous HeLa cells over normal endothelial cells with a dynamic linear range of 5 × 102 to 1 × 105 cells mL-1 with a detection limit of 273 cell mL-1. The GQD-ConA@Fe3O4 also can serve as nanocarriers for loading and delivering doxorubicin (Dox). The in vitro cell images show that the Dox concentration in HeLa cells is enhanced more than double in the presence of external magnetic field due to the incorporation of Fe3O4 in the nanocarrier. The cytotoxicity assay indicates that the susceptibility of cancerous HeLa cells to Dox is 13% higher than that of normal cells, confirming the selective role of ConA in nanocarriers. Results clearly indicate the GQD-ConA@Fe3O4 nanocomposites as a promising material for cancer cell detection and targeted Dox release toward HeLa cells which can serve as the multifunctional platform for novel cancer cell diagnostic and therapeutic applications.


Assuntos
Concanavalina A/química , Sistemas de Liberação de Medicamentos , Óxido Ferroso-Férrico/química , Nanocompostos/administração & dosagem , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Pontos Quânticos/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Eletrodos , Células Endoteliais/efeitos dos fármacos , Grafite/química , Células HeLa , Humanos , Limite de Detecção , Nanocompostos/química , Platina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...